一、概述
1、工程概况
安庆长江公路大桥E标工程南岸堤外引桥为双幅分离式桥梁,单幅一联6跨(6×
桥面横坡见下表:
桥面横坡一览表
墩号桥面横坡梁底轴线与桥轴线距离(cm)
左幅(%)右幅(%)左幅右幅
YR110.1160.020662.20657.15
YR12-1.2170.020665.65657.15
YR13-2.551-2.551669.00655.60
YR14-3.000-3.000670.15654.35
YR15-3.000-3.000670.15654.35
YR16-3.000-3.000670.15654.35
YR17-3.000-3.000670.15654.35
箱梁采用单向预应力体系,纵向预应力钢束设置采用фj15.24钢绞线,Rby=1860Mpa,波纹管制孔。每跨单侧腹板内设置6束16孔钢束,在接缝处采用钢束联结器接长;顶板设置12束7孔钢束,钢束长为
2、施工方法简介
南堤外引桥位于缓和曲线段,桥位区多为农田、耕地及居民拆迁区,陆地施工条件相对较好。施工时,先将桥位地基处理后,采用扣件式满堂脚手架单幅逐跨现浇施工工艺进行施工,施工时,翼缘模板及外侧模采用定制钢模板(按首跨长配置一套模板),内模采用胶合板(按首跨长配置一套模板),底模采用玻璃钢竹胶板(按一个标准跨和一个首跨长度配置)。总体施工工艺流程如下:
3、施工工艺流程
二、满堂支架搭设及预压
1、地基处理
先用推土机将表层耕质土、有机土推平并压实;承台基坑清淤后采用分层回填亚粘土并整平压实。原有地基整平压实后,再在其上填筑大约
2、支架安装
本支架采用“扣件”式满堂脚手架,其结构形式如下:纵向立杆间距为
由于整个堤外引桥位于缓和曲线上,因此拟将每跨支架划分为8个直线段拟和桥面箱梁曲线,每个直线段
脚手管安装好后,在可调顶托上铺设I14工字钢,箱梁底板下方的I14工字钢横向布置,长
3、支架预压
安装模板前,要对支架进行压预。支架预压的目的:1、检查支架的安全性,确保施工安全。2、消除地基非弹性变形和支架非弹性变形的影响,有利于桥面线形控制。
预压荷载为箱梁单位面积最大重量的1.1倍。本方案采用水箱加水分段预压法进行预压:施工前,按照水箱加工图纸加工好水箱,水箱采用
为了解支架沉降情况,在加水预压之前测出各测量控制点标高,测量控制点按顺桥向每
经过几跨施工,得出支架预压后总沉降量在4~15mm之间,最大非弹性变形量为
4、支架受力验算
①、底模板下次梁(6×
底模下脚手管立杆的纵向间距为
置,间距
a、斜腹板对应的间距为
底模处砼箱梁荷载:P1=2.5×26=65kN/m2(按
模板荷载:P2=200kg/m2=2kN/m2
设备及人工荷载:P3=250kg/m2=2.5kN/m2
砼浇注冲击及振捣荷载:P4=200kg/m2=2kN/m2
则有P=(P1+P2+P3+P4)=71.5kN/m2
W=bh2/6=6×122/6=144cm3
由梁正应力计算公式得:
σ=qL2/8W=(71.5×0.18)×1000×0.92/8×144×10-6
=9.05Mpa<[σ]=10Mpa强度满足要求;
由矩形梁弯曲剪应力计算公式得:
τ=3Q/
=1.21Mpa<[τ]=2Mpa(参考一般木质)
强度满足要求;
由矩形简支梁挠度计算公式得:
E=0.1×105Mpa;I=bh3/12=
fmax=5qL4/384EI=5×12.87×103×103×0.94/384×864×10-8×1×1010
=
刚度满足要求。
b、底板下间距为
中间底板位置砼厚度在0.5~0
底模处砼箱梁荷载:P1=0.7×26=18.2kN/m2
内模支撑和模板荷载:P2=400kg/m2=4kN/m2
设备及人工荷载:P3=250kg/m2=2.5kN/m2
砼浇注冲击及振捣荷载:P4=200kg/m2=2kN/m2
则有P=(P1+P2+P3+P4)=26.7kN/m2
q=26.7×0.35=9.345t/m<71.5×0.18=12.87t/m
表明底板下间距为
以上各数据均未考虑模板强度影响,若考虑模板刚度作用和3跨连续梁,则以上各个实际值应小于此计算值。
②、顶托横梁(I14工字钢)验算:
脚手管立杆的纵向间距为
平均荷载大小为q1=71.5×0.9=64.35kN/m
另查表可得:
WI14=102×
跨内最大弯矩为:
Mmax=64.35×0.46×0.46/8=1.702kN.m
由梁正应力计算公式得:
σw=Mmax/W=1.702×106/(102×103)
=16.69Mpa<[σw]=145Mpa满足要求;
挠度计算按简支梁考虑,得:
E=2.1×105Mpa;
fmax=5qL4/384EI=5×64.35×1000×0.464×109/
(384×2.1×105×712×104)
=
③、立杆强度验算:
脚手管(φ48×3.5)立杆的纵向间距为
则有P=71.5kN/m2
由于大横杆步距为
[N]=φA[σ]=0.744×489×215=78.22kN
而Nmax=P×A=71.5×0.46×0.9=29.6kN,可见[N]>N,
抗压强度满足要求。
另由压杆弹性变形计算公式得:(按最大高度
△L=NL/EA=29.6×103×11×103/2.1×105×4.89×102
=
单幅箱梁每跨混凝土
经计算,本支架其余杆件受力均能满足规范要求,本处计算过程从略。
④、地基容许承载力验算:
根据地质资料可知,南岸堤外引桥轴线上地表土质基本为亚粘土层,分别有:重亚粘土、轻亚粘土、人工填土(粉质轻亚粘土,砂壤土)等。地基碾压密实处理并铺垫
三、模板工程
为保证现浇箱梁的外观质量光洁度、表面平整度和线形,加快施工进度,本工程箱梁底模采用铺设竹胶板,外侧模采用大块钢模板,箱体内采用胶合板木模。
1、底模:
箱梁底模采用竹胶板,模板加工时可根据箱梁线形曲线及宽度将模板分段(按顺桥向每
锯板采用合金锯片,直径
当一跨砼浇筑好后,等强度达到80%后,便可张拉、压浆,压浆完成后可将底模板下的可调顶托下降,将I14工字钢、木枋和竹胶板脱离底板,取下竹胶模板等。
2、内模:
箱梁内模采用九合板,木枋顺向布置,木枋截面尺寸为6X
箱梁内模支撑采用φ48×3.5脚手管做排架,立柱支撑在底模顶面上,脚手管顺桥向按
浇注砼之后,等强度达到设计强度的30%后方可进行拆除内模。如果拆模时间过早,容易造成箱梁顶板砼下饶、开裂,甚至倒坍;如果拆模时间过晚,将增大了拆模难度,造成拆模时间长且容易损坏模板。具体拆模时间由现场技术人员视现场砼的凝固情况把握好。
3、封头模板和翼缘端模板
端横隔板封头模板采用玻璃钢竹胶板,施工接缝处缝头模板采用
4、外侧模板和翼缘模板
为确保外观美观,本箱梁外侧模板和翼缘模板采用大型钢板,由专业模板加工厂家加工制作;为施工方便,将外侧模板和翼缘模板加工成整体,每块模板宽为
面板采用
为调模、脱模方便,模板外侧每道背带上设有3根可调丝杆用来支撑模板,确保模板在浇注砼时不向外倾倒。可调丝杆的上端与模板采用铰联结,下端与翼缘模板下方的横向I14工字钢铰联结,每块模板下方的3根横向工字钢通过钢筋连成整体,横向工字钢安装在顺桥向外侧模行走轨道上(纵向I14工字钢)。为确保模板整体不向外滑移,翼缘模板下方的横向工字钢与底板下方的横向工字钢通过“C-C”型紧索具连接在一起,如此一来,浇注砼时两侧腹板砼向外的胀力可以相互抵消。
首跨外侧模板及翼缘模板安装时,采用16t汽车吊起吊。模板起吊前,要将相应的丝杆和横向I14工字钢联接好,在模板就位时,要将模板上的横向工字钢与底模板下的横向工字钢位置对齐。由于每块模板面板均为平面,没有按照箱梁平曲线设置弧面,故安装模板时,确保模板与模板之间留有
当砼强度达到设计强度的50%~60%时,方可脱离外侧模板和翼缘模板。脱模时,只需将每块模板上的可调丝杆收紧,模板就会自动脱离砼表面,十分方便。为确保外侧模和翼缘模能够顺利行走,应确保模板脱离砼面不小于
外侧模行走采用5t或10t卷扬机拖动行走,由于箱梁处于平曲线内,故每次只能行走1~2块模板。模板行走时,卷扬机安放在已浇梁段顶板上,通过人孔、型钢和钢丝绳等将卷扬机固定。为确保钢模板能够行走至将施工梁段的最前端,应确保卷扬机钢丝绳的导向轮安装在施工梁段最前端的前方。为确保模板行走时不脱离行走轨道,将模板下方的横向工字钢通过钢筋等卡在工字钢轨道上。
根据施工实践,外侧模及翼缘模板只需1.5天左右便可全部行走到位,而每一跨箱梁张拉需不少于一天的时间,由于模板行走可在张拉前一天进行。故在张拉完成之前模板能够全部行走到位后。单侧模板行走到位后,便可一边进行调模,另一边进行模板行走,大大缩短了工期。
四、混凝土施工
1、混凝土配合比的设计及要求
①混凝土强度等级为C50
②水泥:采用华新P052.5水泥。
③粗骨料:东至县香口产5~25cm级配。
④细骨料:江西赣江产中粗砂。
⑤单幅箱梁一次浇筑最大方量约
⑥每灌搅拌时间不小于90s。
⑦确保砼的流动性、和易性、秘水性及可泵性能够施工及质量要求。
2、箱梁混凝土浇筑
由于砼为整跨浇注,方量较大,浇注时间长,首跨浇注方量为
由于其它标段的箱梁浇注均出现了不同程度的问题,如腹板砼冷缝及分层现象较明显、顶板砼表面有裂纹、箱梁内翻浆现象严重。项目部对造成这些问题的原因及预防方法进行了专门的讨论,经过讨论,一致认为:腹板砼出现冷缝和分层现象是由以下一种或几种原因引起
①浇注气温过高或风干现象严重造成砼出现假凝现象。②砼初凝时间过短。③砼浇注补料间隔时间过长。④砼振捣不力,在每次补料前没有将砼表面假凝层破碎。
⑤砼配合比不均匀,某层砼浇注坍落度过大,某层砼浇注坍落度过小。顶板砼表面出现裂纹是由以下一种或几种原因引起①浇注气温过高或风干现象严重造成砼表面容易开裂。
②砼养护不力或养护不及时。
③砼表面抹面不力,没有修浆。
④砼配合比不合理。箱梁内翻浆现象严重是由以下一种或几种原因引起①砼坍落度过大。②砼浇注时,每一层浇注过厚。
③砼振捣方法不对,振动时间过长。
④砼初凝时间过长,砼浇注补料间隔时间过短。⑤砼浇注时气温偏低或雨天浇注。
针对以上问题,项目部做出了如下措施:每一跨砼浇注总体上遵循从低处向高处即从南到北的顺序浇注,浇注步骤分四步进行,详见《堤外引桥砼浇注步骤示意图》。
按照示意图所示的浇注工序进行,有效地控制了每一层砼的浇注厚度,既有利于砼振捣,又有效地减少了底板砼的翻浆现象,同时有效地控制了每一次砼浇注后的布料间隔时间。施工过程中,当每一段顶板浇注好后,立即用潮湿麻袋盖好进行养护,防止风吹开裂。每一跨砼浇注时间为13小时左右,采用本方法浇注的砼,拆模后,外观质量较好,没有出现分层和冷缝现象,砼顶面没有出现裂纹。
五、小结
1、本工程的满堂支架地基处理与安庆长江公路大桥其它标段满堂支架地基处理相比,工序上更为简单,造价上更为经济,实践表明结构上也能很好的满足施工及规范要求。
2、采用水箱加水进行预压,表面上看加工水箱价格高,但由于其周转次数多,所花劳动力少,多次周转使用后,比采用砂袋码砂进行预压所花造价要低;且水箱加水进行预压,工序简单,施工进度快,比采用砂袋码砂进行预压要安全,值得推广使用。在今后的施工中,如果采用满堂支架施工的跨数较多,建议采用水箱加水法进行预压;否则宜采用砂袋码砂法进行预压。如果采用水箱加水法进行预压,建议在水箱底部设计若干滚轮或滚轴,以便2~3人就能推动水箱前移。
3、外侧模板及翼缘模板采用大型钢模板,造价比采用竹胶板施工要昂贵,但钢模板比竹胶板可周转的次数要多,浇注的砼的外观质量要好,且模板前移及调模、脱模也更方便,所花时间要少。总之,两者各有优缺点。在今后的施工中,如果采用满堂支架施工的跨数较多,建议采用钢模板施工,否则宜采用竹胶板施工。如果采用大型钢模板,建议在模板下方横向工字钢上设置滚轮,采用人工推动模板前移。