首页 > 施工监理 > 正文
大型斜拉桥梁健康监测概念与设计
2015-12-29 
   一、桥梁健康监测系统与理论发展简况

   1.监测系统

   80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522m的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。该系统是最早安装的较为完整的监测系统之一,它实现了实时监测、实时分析和数据网络共享。建立健康监测系统的典型桥梁还有挪威的Skarnsundet斜拉桥(主跨530m)、美国主跨440m的Sunshine Skyway Bridge斜拉桥、丹麦主跨1624m的Great Belt East悬索桥、英国主跨194m的Flintshire独塔斜拉桥以及加拿大的Confederatiot Bridge桥。我国自90年代起也在一些大型重要桥梁上建立了不同规模的结构监测系统,如香港的青马大桥、汲水门大桥和汀九大桥,内地的上海徐浦大桥以及江阴长江大桥等。

   从已经建立的监测系统的监测目标、功能以及系统运行等方面看,这些监测系统具有以下一些共同特点:

   (1)通常测量结构各种响应的传感装置获取反映结构行为的各种记录;

   (2)除监测结构本身的状态和行为以外,还强度对结构环境条件(如风、车辆荷载等)的监测和记录分析;同时,试图通过桥梁在正常车辆与风载下的动力响应来建立结构的“指纹”,并藉此开发实时的结构整体性与安全性评估技术;

   (3)在通车运营后连续或间断地监测结构状态,力求获取的大桥结构信息连续而完整。某些桥梁监测传感器在桥梁施工阶段即开始工作并用于监控施工质量;

   (4)监测系统具有快速大容量的信息采集、通讯与处理能力,并实现数据的网络共享。

   这些特点使得大跨度桥梁健康监测区别于传统的桥梁检测过程。另外需要指出的是,桥梁健康监测的对象已不再局限于结构本身:一些重要辅助设施的工作状态也已纳入长期监测的范围(如斜拉索振动控制装置等)。

   2.理论研究

   十多年来,桥梁健康监测理论的研究主要集中于结构整体性评估和损伤识别。由于基于振动信息的整体性评估技术在航天、机械等领域的深入研究和运用,这类技术被用于土木结构中除无损检测技术以外的最重要的整体性评估方法并得到广泛的研究。人们致力于基于振动测量值的整体性评估方法研究的另一个原因是,结构振动信息可以在桥梁运营过程中利用环境振动法获得,因此这一方法具有实时监测的潜力。

   结构整体性评估方法可以归结为模式识别法、系统识别法以及神经网络方法三大类。结构模态参数常被用作结构的指纹特征,也是系统识别方法和神经网络法的主要输入信息。另外,基于结构应变模态、应变曲率以及其他静力响应的评估方法也在不同程度上显示了各自的检伤能力。然而,尽管某些整体性评估技术已在一些简单结构上有成功的例子,但还不能可靠地应用于复杂结构。阻碍这一技术进入实用的原因主要包括:①结构与环境中的不确定性和非结构因素影响;②测量信息不完备;③测量精度不足和测量信号噪声;④桥梁结构赘余度大并且测量信号对结构局部损伤不敏感。

   另外,从评估方法上,目前对大跨度桥梁的安全评估基本上仍然沿袭常规中小桥梁的定级评估方法,是一种主要围绕结构的外观状态和正常使用性能进行的定性、粗浅的安全评价。

   二、桥梁健康监测新概念

   桥梁健康监测的基本内涵即是通过对桥梁结构状态的监控与评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁维护潍修与管理决策提供依据和指导。为此,监测系统对以下几个方面进行监控:

   桥梁结构在正常环境与交通条件下运营的物理与力学状态;

   桥梁重要非结构构件(加支座)和附属设施(如振动控制元件)的工作状态;

   结构构件耐久性;

   大桥所处环境条件等等。

   与传统的检测技术不同,大型桥梁健康监测不仅要求在测试上具有快速大容量的信息采集与通讯能力,而且力求对结构整体行为的实时监控和对结构状态的智能化评估。

   然而,桥梁结构健康监测不仅仅只是为了结构状态监控与评估。由于大型桥梁(尤其是斜拉桥、悬索桥)的力学和结构特点以及所处的特定环境,在大桥设计阶段完全掌握和预测结构的力学特性和行为是非常困难的。大跨度索交承桥梁的设计依赖于理论分析并过风洞、振动台模拟试验预测桥梁的动力性能并验证其动力安全性。然而,结构理论分析常基于理想化的有限元离散模型,并且分析时常以很多假定条件为前提。在进行风洞或振动台试验时对大桥的风环境和地面运动的模拟也可能与真实桥位的环境不全相符。因此,通过桥梁健康监测所获得的实际结构的动静力行为来验证大桥的理论模型、计算假定具有重要的意义。事实上,国外一些重要桥梁在建立健康监测系统时都强调利用监测信息验证结构的设计。

   桥梁健康监测信息反馈于结构设计的更深远的意义在于,结构设计方法与相应的规范标准等可能得以改进;并且,对桥梁在各种交通条件和自然环境下的真实行为的理解以及对环境荷载的合理建模是将来实现桥·quot;虚拟设计“的基础。

   还应看到,桥梁健康监测带来的将不仅是监测系统和对某特定桥梁设计的反思,它还可能并应该成为桥梁研究的“现场实验室”。尽管桥梁抗风、抗震领域的研究成果以及新材料新工艺的出现不断推动着桥梁的发展,但是,大跨度桥梁的设计中还存在很多未知和假定,超大跨度桥梁的设计也有许多问题需要研究。同时,桥梁结构控制与健康评估技术的深入研究与开发也需要结构现场试验与调查。桥梁健康监测为桥梁工程中的未知问题和超大跨度桥梁的研究提供了新的契机。由运营中的桥梁结构及其环境所获得的信息不仅是理论研究和实验室调查的补充,而且可以提供有关结构行为与环境规律的最真实的信息。另外,桥梁振动控制与健康评估技术的开发与应用性也需要现场试验与调查。

   综上所述,大型桥梁健康监测不只是传统的桥梁检测加结构评估新技术,而是被赋予了结构监控与评估、设计验证和研究与发展三方面的意义。

   三、健康监测系统设计

   1.监测系统设计准则

   两座大型桥梁健康监测系统的测点布置情况可以看出,两个监测系统的监测项目与规模存在很大差异。这种差异除了桥型和桥位环境因素外,主要是因为对各监测系统的投资额和(或)建立各个系统的目的(或者说是对系统的功能要求)不同。因此,桥梁监测系统的设计实际上有意或无意地遵循着某些准则。

   显然,监测系统的设计应该首先考虑建立该系统的目的和功能。上节所述的桥梁健康监测三方面的意义也正是桥梁健康监测的目的和功能所在。对于特定的桥梁,建立健康监测系统的目的可以是桥梁监控与评估,或是设计验证,甚至以研究发展为目的;也可以是三者之二甚至全部。一旦建立系统的目的确定,系统的监测项目就可以基本上确定。另外,监测系统中各监测项目的规模以及所采用的传感仪器和通信设备等的确定需要考虑投资的限度。因此在设计监测系统时必须对监测系统方案进行成本一效益分析。成本-效益分析是建立高效、合理的监测系统的前提。

   根据功能要求和成本一效益分析可以将监测项目和测点数设计到所需的范围,可以最优化地选择并安装系统硬件设施。因此,功能要求和效益-成本分析是设计桥梁健康监测系统的两大准则。

   2.监测项目

   不同的功能目标所要求的监测项目不尽相同。绝大多数大跨度桥梁监测系统的监测项目都是从结构监控与评估出发的,个别也兼顾结构设计验证甚至部分监测项目以桥梁问题的研究为目的。文献通过对国内多座运营中的斜拉桥进行大量病害调查与检测分析,提出了用于斜拉桥状态监控与评估的颇具代表性的监测项目。

   如果监测系统考虑具有结构设计验证的功能,那就要获得较多结构系统识别所须要的信息。因此,对于大跨度余支承桥梁,须要较多的传感器布置于桥塔、加劲梁以及缆索/拉索各部位,以获得较为详细的结构动力行为并验证结构设计时的动力分析模型和响应预测。另外,在支座、挡块以及某些连结部位须安设传感器拾取反映其传力、约束状况等的信息。

   目前,某些监测系统以开发结构整体性与安全性评估技术为目的之一。结合桥梁问题研究的监测系统虽不多见,但有些系统也有监测项目是专为研究服务的。与理论研究相关的监测项目可以根据待研究问题的性质来确定。从目前桥梁工程的发展状况看,以下几方面的问题可以借助桥梁健康监测进行深入研究或论证。

   抗风方面:包括风场特性观测、结构在自然风场中的行为以及抗风稳定性。

   抗震方面:包括研究各种场地地面运动的空间与时间变化、土-结构相互作用、行波效应、多点激励对结构响应的影响等。通过对墩顶与墩底应变、变形及加速度的监测建立恢复力模型对桥梁的抗震分析具有重要的意义。

   结构整体行为方面:包括研究结构在强风、强地面运动下的非线性特性,桥址处环境条件变化对结构动力特性、静力状态(内力分布、变形)的影响等。这对于发展基于监测数据的整体性评估方法非常重要。

   结构局部问题:例如边界、联接条件,钢梁焊缝疲劳及其他疲劳问题,结合梁结合面(包括剪力键)的破坏机制,等等。索支承桥梁缆(拉)索和吊杆的振动与减振、局部损伤机制等也值得进一步观察研究。

   耐久性问题:桥梁结构中的耐久性问题尚有许多问题须要深入研究。缆(拉)索与吊杆的腐蚀、锈蚀问题尤须重视。

   基础:大直径桩的采用也带来一些设计问题,直接套用原先用于中等直径桩的计算方法不很合理。借助大型桥梁监测系统调查大直径桩的变形规律、研究桩的承载力问题,也是设计部门的需要。
Copyright © 2007-2022 cnbridge.cn All Rights Reserved
服务热线:010-64708566 法律顾问:北京君致律师所 陈栋强
ICP经营许可证100299号 京ICP备10020099号  京公网安备 11010802020311号